GET THE APP

Nanoparticles: Properties, Applications and Toxicities
All submissions of the EM system will be redirected to Online Manuscript Submission System. Authors are requested to submit articles directly to Online Manuscript Submission System of respective journal

Brief Report - (2021) Volume 10, Issue 7

Nanoparticles: Properties, Applications and Toxicities

Pushpa B*
*Correspondence: Pushpa B, Department of Botany, Andhra University, Andhra Pradesh, India, Email:
Department of Botany, Andhra University, Andhra Pradesh, India

Received: 13-Jul-2021 Published: 02-Aug-2021

Brief Report

A nanoparticle is a small particle that ranges between 1 to 100 nanometres in size. Undetectable by the human eye, nanoparticles can exhibit significantly different physical and chemical properties to their larger material counterparts.

This review is provided a detailed overview of the synthesis, properties and applications of nanoparticles (NPs) exist in different forms. NPs are tiny materials having size ranges from 1 to 100 nm. They can be classified into different classes based on their properties, shapes or sizes. The different groups include fullerenes, metal NPs, ceramic NPs, and polymeric NPs. NPs possess unique physical and chemical properties due to their high surface area and nanoscale size. Their optical properties are reported to be dependent on the size, which imparts different colors due to absorption in the visible region. Their reactivity, toughness and other properties are also dependent on their unique size, shape and structure. Due to these characteristics, they are suitable candidates for various commercial and domestic applications, which include catalysis, imaging, medical applications, energy-based research, and environmental applications. Heavy metal NPs of lead, mercury and tin are reported to be so rigid and stable that their degradation is not easily achievable, which can lead to much environmental toxicity.

Nanoparticles can be classified into different types according to the size, morphology, physical and chemical properties. Some of them are carbon-based nanoparticles, ceramic nanoparticles, metal nanoparticles, semiconductor nanoparticles, polymeric nanoparticles and lipid-based nanoparticles.

Applications

There are several important applications of nanomaterials such as aviation and space, chemical industry, optics, solar hydrogen, fuel cell, batteries, sensors, power generation, aeronautic industry, building/construction industry, automotive engineering, consumer electronics, thermoelectric devices, pharmaceuticals. The principal parameters of nanoparticles are their shape (including aspect ratios where appropriate), size, and the morphological sub-structure of the substance. Nanoparticles are presented as an aerosol (mostly solid or liquid phase in air), a suspension (mostly solid in liquids) or an emulsion (two liquid phases). Nanoparticles often have unexpected visible properties because they are small enough to confine their electrons and produce quantum effects. For example gold nanoparticles appear deep red to black in solution. Nanoparticles have a very high surface area to volume ratio. Nanoparticles are used increasingly in catalysis to boost chemical reactions. This reduces the quantity of catalytic materials necessary to produce desired results, saving money and reducing pollutants. Two big applications are in petroleum refining and in automotive catalytic converters.

Advantages and disadvantages of using nanoparticles

Large surface area to volume ratio makes them effective catalysts. 

So small they can enter the skin and therefore the bloodstream.

 Nanoparticles in sun creams can be absorbed deeper into the skin.

 Large surface can make them too reactive and explosive in some situations.

https://paperio-live.com/

wowcappadocia.com cappadocia tours
cappadocia-hotels.com cappadocia hotels
balloon-rides.net cappadocia balloon flights

wormax io

https://www.unitedluxury.net/